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A powerful computational methodology, named the barycentric Lagrange interpolation ite-
ration collocation method (BLIICM), for solving nonlinear bending problems of a doubly
clamped microbeam under electrostatic loads is presented. The nonlinear governing equation
of the microbeam is converted into a linear differential equation by assuming the initial
function. The barycentric Lagrange interpolation collocation method (BLICM) is used to
solve the linear differential equation. The direct linearization formulations and Newton li-
nearization calculation formulations for the nonlinear differential equation have been given.
The calculation method and formulation of the nonlinear integral term have been discussed
in details. By applying a barycentric Lagrange interpolation differential matrix, a matrix-
-vector calculation formula of BLIICM has been established. Numerical results of calculation
examples show that the advantages of the proposed methodology are efficient, simple and
of high precision.
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1. Introduction

Microbeams are used in microsensors and microactuators fabricated by MEMS technology
(Brusa et al., 2004). The main mechanism of microsensor and microactuator can be simpli-
fied as a microbeam in micro electro-mechanical systems (MEMS). The geometric dimension of
microbeams is normally in micron scale and microbeams mainly bear electric loads and axial
forces. The relation between the force of electric potential acting on the microbeam and the
deflection of the microbeam is nonlinear. For accurate analysis of microbeam mechanical pro-
perties, the elongation effect of the microbeam shall be considered. Considering external forces
and geometric nonlinear factors of the microbeam, the governing equation of the microbeam
bending established is a nonlinear differential equation. The analytical method used to solve
the microbeam nonlinear differential equation is often extremely complicated and sometimes
even impossible. With the progress of computer technology, the numerical method has become
important for analysis of nonlinear bending of microbeams (Rezazadeh et al., 2009; Zand et al.,
2009; Batra et al., 2008).

A high accuracy numerical method is needed to analyze microbeams, because the maximum
deflection of the microbeams deformation is in micron to nanometer scales. Nayfeh, Mook, and
Lobitz used a numerical-perturbation method to analyze forced vibration of a non-uniform beam
(Nayfeh et al., 1974). Refwield (2015) analyzed vibration of nonlinear flat arch. Choi and Lovell



742 M. Zhuang et al.

(1997) converted the microbeam boundary value problem into the initial value problem and
then used the shoot method to solve it (Choi, 1992). The differential quadrature method is a
high precision collocation method widely used to solve Euler-Bernoulli microbeam bending and
vibration problems (Shu and Du, 1997; Tomasiello, 1998; Karami and Malekzadeh, 2002). The
differential quadrature method is a collocation method that approximates the unknown function
based on Lagrange interpolation (Kuang and Chen, 2004; Najar et al., 2004; Sadeghian et al.,
2007). Due to numerical instability of Lagrange interpolation, its calculation result tends to be
instable with an increase of quantity of calculation nodes.
We can obtain a barycentric Lagrange interpolation by transforming the Lagrange interpo-

lation into barycentric form. Rewriting the Lagrange interpolation formula to barycentric form
can apparently improve numerical stability of the interpolation (Berrut and Trefethen, 2004).
Wang et al. (2007) used the barycentric interpolation to approximate the unknown function,
establishing differential matrices of the unknown function and each order of its derivative on
calculation nodes, proposing a high accuracy grid-free barycentric interpolation collocation me-
thod to solve differential equation initial (boundary) value problems, and providing an algorithm
program and a large amount of engineering calculation examples (Berrut et al., 2005; Floater
and Hormann, 2007; Li and Wang, 2012; Wang et al., 2014a,b). Numerical calculation examples
show that the barycentric interpolation collocation method has advantages of convenient use,
high efficiency and high accuracy. It is a high accuracy meshless numerical calculation method
applicable to numerical calculations for various differential equations.
Based on the barycentric interpolation collocation method and in combination with the line-

arization method for nonlinear differential equations, this article has established a barycentric
Lagrange interpolation iteration collocation method (BLIICM) for solving nonlinear bending
problems of doubly clamped microbeams under electrostatic loads, and presents numerical cal-
culation examples to verify effectiveness and computational accuracy of this proposed method.

2. Barycentric Lagrange interpolation and its differentiation matrices

Given a function v(x) defined on the interval 0 = x1 < x2 < · · · < xn = l and function values on
the nodes vj = v(xj), j = 1, 2, . . . , n, the barycentric Lagrange interpolation of the function v(x)
is

v(x) =
n
∑

j=1

wj
x− xj

vj

/

n
∑

j=1

wj
x− xj

(2.1)

where wj = 1/
∏

j 6=k(xj − xk), j = 0, 1, . . . , n is the barycentric Lagrange interpolation weight.
The barycentric Lagrange interpolation of the function v(x) can be simplified as

v(x) =
n
∑

j=1

Lj(x)vj Lj(x) =
wj
x− xj

/

n
∑

j=1

wj
x− xj

(2.2)

And then, the m-th order derivative of the function v(x) can be written as

v(m)(x) =
dmv(x)

dxm
=
n
∑

j=1

L
(m)
j (x)vj (2.3)

So the m-th order derivative of the function v(x) on the nodes x1 < x2 < · · · < xn can be
written as

v(m)(xi) = v
(m)
i =

dmv(xi)

dtm
=
n
∑

j=1

D
(m)
ij vj (2.4)
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Equation (2.4) can be written in the following matrix form (Wang et al., 2007)

v(m) = D(m)v (2.5)

where v(m) = [v
(m)
1 , v

(m)
2 , . . . , v

(m)
n ]T and v = [v1, v2, . . . , vn]

T represent the column vector of the
m-th order derivative and the value of the function v(x) on the nodes, respectively. Matrix D(m)

indicates the unknown functionm-th order barycentric Lagrange interpolation differential matrix

on the nodes x1, x2, . . . , xn, which is composed of the elements D
(m)
ij = L

(m)
j (xi).

3. Calculation models of an MEMS microbeam

As shown in Fig. 1, while a microbeam is loaded electrostatically, the transverse force per unit
area is displacement dependent. So the function per unit force of the axial coordinate x is
expressed as

p = p(v(x)) =
ε0V

2

2[g − v(x)]2
(3.1)

where V is the applied voltage, g is the gap between the beams and the cover electrode (Fig. 1),
and ε0 = 8.854 · 10

−12 F/m is the permittivity of vacuum.

Fig. 1. Diagram of a doubly clamped microbeam

Stretching the induced tension T and tension from the intrinsic strain Ti can be included
with the nonlinear loading for the most accurate representation (Nayfeh et al., 1974)

EI
d4v

dx4
− (T + Ti)

d2v

dx2
=

ε0V
2w

2[g − v(x)]2
(3.2)

where Ti is taken as 0.01% of the residual strain of the microbeam and w is the width of the
microbeam. According to the relation between the stretching tension and bending deflection of
the microbeam, Eq. (3.2) can be written as

EI
d4v(x)

dx4
−
[Ewh

2l

l
∫

0

(dv(x)

dx

)2
dx+ Ti

]d2v(x)

dx2
=

ε0V
2w

2[g − v(x)]2
(3.3)

Equation (3.3) is solved by the numerical method proposed in this article with the boundary
condition

v′(0) = v′(2l) = v(0) = v(2l) = 0 (3.4)
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4. Linearization iteration collocation method for the nonlinear differential

equation

Using Eq. (2.2) to approximate the unknown function, nonlinear Eq. (3.4) is usually discreted
to nonlinear algebraic equations and then the Newton-Raphson iteration is used to solve these
nonlinear algebraic equations to obtain a numerical solution. The discrete form of the barycentric
interpolation collocation method for Eq. (3.3) can be written as

EI
n
∑

j=1

L′′′′j (xi)vj −
[Ewh

2l

l
∫

0

(

n
∑

j=1

L′j(x)vj
)2
dx+ Ti

]

n
∑

j=1

L′′j (xi)vj

=
ε0V

2w

2
(

g −
∑n
j=1Lj(x)vj

)2

(4.1)

It is very fussy to construct a Newton-Raphson iteration form of nonlinear Eq. (4.1). The
linearization iteration collocation method is adopted to solve nonlinear Eq. (4.1). Under a me-
chanical load, for a given assumed initial function v0 = v0(x), under electric load and for the
given assumed initial function of v0 = v0(x), Eq.(4.1) can be directly linearized to

EI
d4v(x)

dx4
−
[Ewh

2l

l
∫

0

(dv0(x)

dx

)2
dx+ Ti

]d2v(x)

dx2
=

ε0V
2w

2[g − v0(x)]2
(4.2)

Accordingly, the linearized iteration form can be directly constructed as follows

EI
d4vk(x)

dx4
−
[Ewh

2l

l
∫

0

(dvk−1(x)

dx

)2
dx+Ti

]d2vk(x)

dx2
=

ε0V
2w

2[g − vk−1(x)]2
k = 1, 2, 3, . . .

(4.3)

Equation (4.3) is a linear differential equation. Using form (2.5) of the barycentric Lagrange
interpolation and characteristic of interpolation basis functions, Eq. (4.3) can be written in form
of a matrix

[

EID(4) − (Tk−1 + Ti)D
(2)
]

vk = pk−1 k = 1, 2, 3, . . . (4.4)

where

pk−1 =
ε0V

2w

2[g − vk−1]2

is the external force vector of the (k − 1)-th iteration.

The Newton iteration method is anthoer more available way. In the Newton iteration method,
the approximating function is the line tangent to the nonlinear electric load

p = p(v(x)) =
ε0V

2

2[g − v(x)]2

at the initial point v0 (advised v0 = 0), where v0 is the assumed initial point. Equation (4.2) in
a Taylor series about v0 and discarding nonlinear terms yields

p(v) ≈ p(v0) + p
′(v0)(v − v0) (4.5)
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Substituting Eq. (4.5) into Eq. (4.2), we can obtain

EI
n
∑

j=1

L′′′′j (xi)vj −
[Ewh

2l

l
∫

0

(

n
∑

j=1

L′j(x)vj(0)
)2
dx+ Ti

]

n
∑

j=1

L′′j (xi)vj

= p(v0) + p
′(v0)(v − v0)

(4.6)

Accordingly, the following iteration differential equation of the Newton linearization method can
be obtained

EI
n
∑

j=1

L′′′′j (xi)vj(k) −
[Ewh

2l

l
∫

0

(

n
∑

j=1

L′j(x)vj(k−1)
)2
dx+ Ti

]

n
∑

j=1

L′′j (xi)vj(k)

= p(v(k−1)) + p
′(v(k−1))(v(k) − v(k−1))

(4.7)

Now, the iteration differential matrix form of Eq.(4.7) can be obtained as follows
[

EID(4) − (Tk−1 + Ti)D
(2)
]

vk = pk−1 + p
′
k−1(vk − vk−1) k = 1, 2, 3, . . . (4.8)

The nonlinear integral term in the microbeam governing Eq. (3.3) is related to stretching
tension of the microbeam and its computational accuracy directly affects the error of the final
computation result. We use Gauss integration for numerical integration. Barycentric interpola-
tion of the unknown function is substituted in the integral term, and the square expansion of
the integral term yields

T =
Ewh

2l

l
∫

0

(dv(x)

dx

)2
dx =

Ewh

2l

l
∫

0

(

n
∑

j=1

L′j(x)vj
)2
dx

=
Ewh

2l

n
∑

i=1

n
∑

j=1

(

l
∫

0

L′i(x)L
′
j(x) dx

)

vivj

(4.9)

Introducing notation Aij =
∫ b
a [L
′
i(x)L

′
j(x)] dx, we can obtain

b
∫

a

(dv

dx

)2
dx =

N
∑

i=1

N
∑

j=1

Aijvivj = v
TAv (4.10)

where A is an n × n matrix comprising elements Aij and referred to as the barycentric inter-
polation integral matrix. Aij is a definite integral of arycentric interpolation primary function
derivative interactive product, which is constant only if related to the interpolation node and
irrelevant of the type of problem to be solved. According to formula (4.10), we can obtain
stretching tension of the microbeam after (k − 1)-th iteration

Tk−1 =
Ewh

2l

l
∫

0

(dvk−1(x)

dx

)2
dx =

Ewh

2l
vTk−1Avk−1 (4.11)

The substitution method (Wang et al., 2007) is used to apply boundary conditions of the
MEMS microbeam. Starting from the assumed initial value v0 (v0 = 0) the iteration method is
used to solve direct linearization Eq. (4.4) or Newton linearization Eq. (4.8), to obtain a corrected
solution v1 of the unknown function v(x) on nodes. Then, Eq. (4.11) can be used to obtain the
corrected solution T1. For a given control accuracy ε = 10

−10, if ‖vk−vk−1‖∞ < ε, the corrected
solution vk is the numerical solution of the MEMS microbeam; otherwise the iteration is kept
until the computational control accuracy ε is met and then the numerical solution is obtained.



746 M. Zhuang et al.

5. Numerical results

The calculation program is compiled by MATLAB. By making use of the barycentric Lagrange
interpolation differential matrix, the matrix-vector calculation formula of BLIICM has been
established. Relying on the powerful matrix operation capability of MATLAB, the calculation
program can be easily and quickly compiled. Microbeam geometric and physical parameters are
shown in Fig. 1. For calculation, the computational domain is [0, 400] and the type of discrete
nodes is the Chebyshev node xi = 200 + 200 cos(iπ/n), i = 0, 1, 2, . . . , n. In the collocation
method, 21 nodes are selected. The control precision of iteration methods is 10−10 and the
Gauss integral with 6 points is applied.
In this Section, there is no analytical solution to Eq. (3.2). So, we quote the maximum

residual error (err) to illustrate the solution accuracy of BLIICM. Here, the maximum residual
error is

err = max
k=1,2,...,n

|EIv(4)(xk)− (T + Ti)v
(2)(xk)− p(v(xk))|

Based on the numerical results of Fig. 2, Table 1 and Table 2 comprehensively, the following
observations can be concluded:

• in terms of the convergence rate, the Newton linearization iteration is apparently faster
than the direct linearization iteration,

• in terms of differential equation residual, the Newton linearization iteration method has a
higher computational accuracy than the direct linearization iteration method,

• computation results of BLIICM are highly consistent with the results of reference.

Fig. 2. The iterative process of the direct (a) and Newton (b) linearization method at V2 = 40

Figure 3 shows comparative results of the maximum deflection of the microbeam for three
tensional cases with various voltages. It can be seen that the existance of induced tension streng-
thens the deformation resistance of the microbeam. It is also known that deflection of the mi-
crobeam is the smallest while considering the induced tension and the residual tensile strain of
0.01%, and that the deflection of the microbeam is the largest when the axial effects are absent.
Figure 4 shows the relations of the induced tensile force and residual strain of the microbeam

with various voltages. It can be seen that the residual stain has a huge effect on the induced tensile
force, and this effect is more remarkable with an increase of the electric load. The mechanical
properties of the microbeam caused by the residual stain are known that an extremely high
dimensional precision applies to the process and installation of the microbeam, and it needs to
have a great improvement to the process level in fact.
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Table 1. MEMS microbeam calculation results without considering 0.01% residual strain

Vol-
tage
[V2]

Direct iteration method Newton iteration method
Midspan Axial

Itera-
tions

Residual
error

Midspan Axial
Itera-
tions

Residual
error

deflection force deflection force
[µm] [µN] [µm] [µN]

20 0.0589 0.7843 4 4.0536 · 10−7 0.0589 0.7845 3 2.5976 · 10−15

30 0.0935 1.9791 5 6.4801 · 10−7 0.0936 1.9812 3 1.2745 · 10−14

40 0.1335 4.0329 7 1.3098 · 10−6 0.1335 4.0359 4 5.0783 · 10−12

50 0.1818 7.4771 8 1.3105 · 10−6 0.1819 7.4891 4 1.3164 · 10−14

60 0.2463 13.7156 10 5.3423 · 10−6 0.2463 13.7265 4 5.2615 · 10−12

Table 2. BLIICM and Shooting Method numerical results of the MEMS microbeam without
considering 0.01% residual strain

Vol-
tage
[V2]

Direct iteration method Newton iteration method
Shooting method,
Zand et al. (2009)

Midspan Axial Midspan Axial Midspan Axial
deflection force deflection force deflection force
[µm] [µN] [µm] [µN] [µm] [µN]

1.0 0.2694 · 10−2 0.1629 · 10−2 0.2694 · 10−2 0.1643 · 10−2 0.2694 · 10−2 0.1642 · 10−2

2.0 0.1091 · 10−1 0.2686 · 10−1 0.1091 · 10−1 0.2678 · 10−1 0.1089 · 10−1 0.2677 · 10−1

3.0 0.2512 · 10−1 0.1425 · 100 0.2512 · 10−1 0.1427 · 100 0.2512 · 10−1 0.1427 · 100

4.0 0.4617 · 10−1 0.4821 · 100 0.4617 · 10−1 0.4822 · 100 0.4617 · 10−1 0.4822 · 100

5.0 0.7570 · 10−1 0.1296 · 101 0.7570 · 10−1 0.1297 · 101 0.7570 · 10−1 0.1297 · 101

6.0 0.1168 · 10−1 0.3083 · 101 0.1168 · 10−1 0.3085 · 101 0.1168 · 10−1 0.3085 · 101

7.0 0.1765 · 100 0.7039 · 101 0.1765 · 100 0.7046 · 101 0.1765 · 100 0.7045 · 101

8.0 0.2821 · 100 0.1798 · 102 0.2822 · 100 0.1800 · 102 0.2822 · 100 0.1800 · 102

Fig. 3. Maximum deflections for electrical loading and three tensional cases with various voltages

6. Conclusions

Doubly clamped microbeams under electrostatic loads have been analysed by using the collo-
cation method based on the barycentric Lagrange interpolation iteration. Compared with other
numerical methods of solving the differential equation, the collocation method in this article has
merits of simple calculation formulations, convenient program and a high computation preci-
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Fig. 4. Induced axial force for electrical loading with and without the residual strain with
various voltages

sion. The BLIICM adopting matrix-vector calculation formula has obvious advantages in solving
nonlinear problems as it can analyze such problems quickly and accurately.
For the existing stretching effects, the induced tension has a considerable influence in reducing

displacements and stresses because the stiffness increases with the increasing transverse load.
In a especial case of electrical loading, the residual strain has a strong influence on the induced
tensile force. Therefore, analysis of the microbeam geometric nonlinear factor and the inertial
nonlinear factor of MEMS microbeam mechanical properties is very important. In particular, the
microbeam geometric nonlinear factor and the inertial nonlinear factor are decisive for design
and use in MEMS, and sufficient attention should be given to them before implementation.
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